Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37519241

RESUMO

α- and ß-tubulin have an unstructured glutamate-rich region at their C-terminal tails (CTTs). The function of this region in cilia and flagella is still unclear, except that glutamates in CTTs act as the sites for post-translational modifications that affect ciliary motility. The unicellular alga Chlamydomonas possesses only two α-tubulin and two ß-tubulin genes, each pair encoding an identical protein. This simple gene organization might enable a complete replacement of the wild-type tubulin with its mutated version. Here, using CRISPR/Cas9, we generated mutant strains expressing tubulins with modified CTTs. We found that the mutant strain in which four glutamate residues in the α-tubulin CTT had been replaced by alanine almost completely lacked polyglutamylated tubulin and displayed paralyzed cilia. In contrast, the mutant strain lacking the glutamate-rich region of the ß-tubulin CTT assembled short cilia without the central apparatus. This phenotype is similar to mutant strains harboring a mutation in a subunit of katanin, the function of which has been shown to depend on the ß-tubulin CTT. Therefore, our study reveals distinct and important roles of α- and ß-tubulin CTTs in the formation and function of cilia.


Assuntos
Ácido Glutâmico , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Ácido Glutâmico/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Processamento de Proteína Pós-Traducional , Microtúbulos/metabolismo
2.
PLoS One ; 15(5): e0232594, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32401787

RESUMO

Generation and subsequent analysis of mutants is critical to understanding the functions of genes and proteins. Here we describe TIM, an efficient, cost-effective, CRISPR-based targeted insertional mutagenesis method for the model organism Chlamydomonas reinhardtii. TIM utilizes delivery into the cell of a Cas9-guide RNA (gRNA) ribonucleoprotein (RNP) together with exogenous double-stranded (donor) DNA. The donor DNA contains gene-specific homology arms and an integral antibiotic-resistance gene that inserts at the double-stranded break generated by Cas9. After optimizing multiple parameters of this method, we were able to generate mutants for six out of six different genes in two different cell-walled strains with mutation efficiencies ranging from 40% to 95%. Furthermore, these high efficiencies allowed simultaneous targeting of two separate genes in a single experiment. TIM is flexible with regard to many parameters and can be carried out using either electroporation or the glass-bead method for delivery of the RNP and donor DNA. TIM achieves a far higher mutation rate than any previously reported for CRISPR-based methods in C. reinhardtii and promises to be effective for many, if not all, non-essential nuclear genes.


Assuntos
Sistemas CRISPR-Cas , Chlamydomonas reinhardtii/genética , Edição de Genes/métodos , Mutagênese Insercional/métodos , DNA/genética , RNA Guia de Cinetoplastídeos/genética
3.
Nat Commun ; 10(1): 1143, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850601

RESUMO

Motile cilia are microtubule-based organelles that play important roles in most eukaryotes. Although axonemal microtubules are sufficiently stable to withstand their beating motion, it remains unknown how they are stabilized while serving as tracks for axonemal dyneins. To address this question, we have identified two uncharacterized proteins, FAP45 and FAP52, as microtubule inner proteins (MIPs) in Chlamydomonas. These proteins are conserved among eukaryotes with motile cilia. Using cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM), we show that lack of these proteins leads to a loss of inner protrusions in B-tubules and less stable microtubules. These protrusions are located near the inner junctions of doublet microtubules and lack of both FAP52 and a known inner junction protein FAP20 results in detachment of the B-tubule from the A-tubule, as well as flagellar shortening. These results demonstrate that FAP45 and FAP52 bind to the inside of microtubules and stabilize ciliary axonemes.


Assuntos
Proteínas de Algas/química , Axonema/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cílios/metabolismo , Flagelos/metabolismo , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Dineínas do Axonema/química , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Axonema/genética , Axonema/ultraestrutura , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestrutura , Cílios/genética , Cílios/ultraestrutura , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Flagelos/genética , Flagelos/ultraestrutura , Expressão Gênica , Microscopia de Força Atômica
4.
Mol Biol Cell ; 26(23): 4236-47, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26399296

RESUMO

The outer arm dynein (OAD) complex is the main propulsive force generator for ciliary/flagellar beating. In Chlamydomonas and Tetrahymena, the OAD complex comprises three heavy chains (α, ß, and γ HCs) and >10 smaller subunits. Dynein light chain-1 (LC1) is an essential component of OAD. It is known to associate with the Chlamydomonas γ head domain, but its precise localization within the γ head and regulatory mechanism of the OAD complex remain unclear. Here Ni-NTA-nanogold labeling electron microscopy localized LC1 to the stalk tip of the γ head. Single-particle analysis detected an additional structure, most likely corresponding to LC1, near the microtubule-binding domain (MTBD), located at the stalk tip. Pull-down assays confirmed that LC1 bound specifically to the γ MTBD region. Together with observations that LC1 decreased the affinity of the γ MTBD for microtubules, we present a new model in which LC1 regulates OAD activity by modulating γ MTBD's affinity for the doublet microtubule.


Assuntos
Dineínas do Axonema/metabolismo , Microtúbulos/metabolismo , Chlamydomonas/enzimologia , Chlamydomonas/metabolismo , Cílios/enzimologia , Cílios/metabolismo , Flagelos/enzimologia , Flagelos/metabolismo , Microscopia Eletrônica/métodos , Microtúbulos/enzimologia , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/metabolismo , Tetrahymena/enzimologia , Tetrahymena/metabolismo
6.
Mol Biol Cell ; 25(9): 1472-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24574454

RESUMO

The axoneme-the conserved core of eukaryotic cilia and flagella-contains highly specialized doublet microtubules (DMTs). A long-standing question is what protein(s) compose the junctions between two tubules in DMT. Here we identify a highly conserved flagellar-associated protein (FAP), FAP20, as an inner junction (IJ) component. The flagella of Chlamydomonas FAP20 mutants have normal length but beat with an abnormal symmetrical three-dimensional pattern. In addition, the mutant axonemes are liable to disintegrate during beating, implying that interdoublet connections may be weakened. Conventional electron microscopy shows that the mutant axonemes lack the IJ, and cryo-electron tomography combined with a structural labeling method reveals that the labeled FAP20 localizes at the IJ. The mutant axonemes also lack doublet-specific beak structures, which are localized in the proximal portion of the axoneme and may be involved in planar asymmetric flagellar bending. FAP20 itself, however, may not be a beak component, because uniform localization of FAP20 along the entire length of all nine DMTs is inconsistent with the beak's localization. FAP20 is the first confirmed component of the IJ. Our data also suggest that the IJ is important for both stabilizing the axoneme and scaffolding intra-B-tubular substructures required for a planar asymmetrical waveform.


Assuntos
Axonema/metabolismo , Chlamydomonas reinhardtii/metabolismo , Flagelos/fisiologia , Proteínas de Plantas/fisiologia , Animais , Chlamydomonas reinhardtii/citologia , Flagelos/ultraestrutura , Microtúbulos/metabolismo , Estabilidade Proteica , Transporte Proteico , Peixe-Zebra
7.
Mol Biol Cell ; 25(1): 107-17, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24196831

RESUMO

Tubulin undergoes various posttranslational modifications, including polyglutamylation, which is catalyzed by enzymes belonging to the tubulin tyrosine ligase-like protein (TTLL) family. A previously isolated Chlamydomonas reinhardtii mutant, tpg1, carries a mutation in a gene encoding a homologue of mammalian TTLL9 and displays lowered motility because of decreased polyglutamylation of axonemal tubulin. Here we identify a novel tpg1-like mutant, tpg2, which carries a mutation in the gene encoding FAP234, a flagella-associated protein of unknown function. Immunoprecipitation and sucrose density gradient centrifugation experiments show that FAP234 and TTLL9 form a complex. The mutant tpg1 retains FAP234 in the cell body and flagellar matrix but lacks it in the axoneme. In contrast, tpg2 lacks both TTLL9 and FAP234 in all fractions. In fla10, a temperature-sensitive mutant deficient in intraflagellar transport (IFT), both TTLL9 and FAP234 are lost from the flagellum at nonpermissive temperatures. These and other results suggest that FAP234 functions in stabilization and IFT-dependent transport of TTLL9. Both TTLL9 and FAP234 are conserved in most ciliated organisms. We propose that they constitute a polyglutamylation complex specialized for regulation of ciliary motility.


Assuntos
Axonema/enzimologia , Chlamydomonas reinhardtii/enzimologia , Peptídeo Sintases/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Chlamydomonas reinhardtii/citologia , Sequência Conservada , Citoplasma/enzimologia , Estabilidade Enzimática , Flagelos/enzimologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Homologia de Sequência de Aminoácidos , Tubulina (Proteína)/metabolismo
8.
J Cell Biol ; 201(2): 263-78, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23569216

RESUMO

Axonemal dyneins must be precisely regulated and coordinated to produce ordered ciliary/flagellar motility, but how this is achieved is not understood. We analyzed two Chlamydomonas reinhardtii mutants, mia1 and mia2, which display slow swimming and low flagellar beat frequency. We found that the MIA1 and MIA2 genes encode conserved coiled-coil proteins, FAP100 and FAP73, respectively, which form the modifier of inner arms (MIA) complex in flagella. Cryo-electron tomography of mia mutant axonemes revealed that the MIA complex was located immediately distal to the intermediate/light chain complex of I1 dynein and structurally appeared to connect with the nexin-dynein regulatory complex. In axonemes from mutants that lack both the outer dynein arms and the MIA complex, I1 dynein failed to assemble, suggesting physical interactions between these three axonemal complexes and a role for the MIA complex in the stable assembly of I1 dynein. The MIA complex appears to regulate I1 dynein and possibly outer arm dyneins, which are both essential for normal motility.


Assuntos
Movimento Celular , Chlamydomonas reinhardtii/citologia , Cílios/metabolismo , Sequência Conservada , Dineínas/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Axonema/metabolismo , Sequência de Bases , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/ultraestrutura , Cílios/ultraestrutura , Dineínas/química , Genes de Plantas , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Nexinas de Proteases/metabolismo , Ligação Proteica , Estabilidade Proteica , Transporte Proteico , Sequências Repetitivas de Aminoácidos
9.
Science ; 331(6021): 1196-9, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21273447

RESUMO

Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.


Assuntos
Centríolos/química , Proteínas Cromossômicas não Histona/química , Proteínas de Peixe-Zebra/química , Motivos de Aminoácidos , Animais , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centríolos/metabolismo , Centríolos/ultraestrutura , Centrossomo/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cristalografia por Raios X , Flagelos/metabolismo , Flagelos/ultraestrutura , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Mutantes/química , Mutação Puntual , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
10.
Curr Biol ; 20(5): 441-5, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20188560

RESUMO

Tubulin polyglutamylation is a modification that adds multiple glutamates to the gamma-carboxyl group of a glutamate residue in the C-terminal tails of alpha- and beta-tubulin [1, 2]. This modification has been implicated in the regulation of axonal transport and ciliary motility. However, its molecular function in cilia remains unknown. Here, using a novel Chlamydomonas reinhardtii mutant (tpg1) that lacks a homolog of human TTLL9, a glutamic acid ligase enzyme [3], we found that the lack of a long polyglutamate side chain in alpha-tubulin moderately weakens flagellar motility without noticeably impairing the axonemal structure. Furthermore, the double mutant of tpg1 with oda2, a mutation that leads to loss of outer-arm dynein, completely lacks motility. More surprisingly, when treated with protease and ATP, the axoneme of this paralyzed double mutant displayed faster microtubule sliding than the motile oda2 axoneme. These and other results suggest that polyglutamylation directly regulates microtubule-dynein interaction mainly by modulating the function of inner-arm dyneins.


Assuntos
Dineínas do Axonema/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Chlamydomonas reinhardtii/metabolismo , Regulação da Expressão Gênica/fisiologia , Mutação , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Ácido Poliglutâmico/metabolismo
11.
Mol Biol Cell ; 20(13): 3044-54, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19420136

RESUMO

Our goal is to understand the assembly and regulation of flagellar dyneins, particularly the Chlamydomonas inner arm dynein called I1 dynein. Here, we focus on the uncharacterized I1-dynein IC IC97. The IC97 gene encodes a novel IC without notable structural domains. IC97 shares homology with the murine lung adenoma susceptibility 1 (Las1) protein--a candidate tumor suppressor gene implicated in lung tumorigenesis. Multiple, independent biochemical assays determined that IC97 interacts with both alpha- and beta-tubulin subunits within the axoneme. I1-dynein assembly mutants suggest that IC97 interacts with both the IC138 and IC140 subunits within the I1-dynein motor complex and that IC97 is part of a regulatory complex that contains IC138. Microtubule sliding assays, using axonemes containing I1 dynein but devoid of IC97, show reduced microtubule sliding velocities that are not rescued by kinase inhibitors, revealing a critical role for IC97 in I1-dynein function and control of dynein-driven motility.


Assuntos
Proteínas de Algas/genética , Dineínas/metabolismo , Microtúbulos/fisiologia , Tubulina (Proteína)/metabolismo , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Animais , Axonema/metabolismo , Axonema/fisiologia , Sequência de Bases , Western Blotting , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiologia , Clonagem Molecular , Dineínas/genética , Imunoprecipitação , Microtúbulos/metabolismo , Dados de Sequência Molecular , Mutação , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
12.
J Biol Chem ; 284(9): 5927-35, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19124458

RESUMO

Outer arm dynein (OAD) of cilia and flagella contains two or three distinct heavy chains, each having a motor function. To elucidate their functional difference, we compared the in vitro motile properties of Chlamydomonas wild-type OAD containing the alpha, beta, and gamma heavy chains and three kinds of mutant OADs, each lacking one of the three heavy chains. For systematic comparison, a method was developed to introduce a biotin tag into a subunit, LC2, which served as the specific anchoring site on an avidin-coated glass surface. Wild-type OAD displayed microtubule gliding in the presence of ATP and ADP, with a maximal velocity of 5.0 mum/s, which is approximately 1/4 of the microtubule sliding velocity in the axoneme. The duty ratio was estimated to be as low as 0.08. The absence of the beta heavy chain lowered both the gliding velocity and ATPase activity, whereas the absence of the gamma heavy chain increased both activities. Strikingly, the absence of the alpha heavy chain lowered the gliding velocity but increased the ATPase activity. Thus, the three heavy chains are likely to play distinct roles and regulate each other to achieve coordinated force production.


Assuntos
Movimento Celular , Chlamydomonas/enzimologia , Dineínas/genética , Dineínas/metabolismo , Microtúbulos/metabolismo , Animais , Biotinilação , Western Blotting , Chlamydomonas/genética , Cílios/fisiologia , Flagelos/fisiologia , Mutação/genética , Subunidades Proteicas
13.
Eukaryot Cell ; 7(1): 154-61, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17981992

RESUMO

Cilia and flagella have multiple dyneins in their inner and outer arms. Chlamydomonas inner-arm dynein contains at least seven major subspecies (dynein a to dynein g), of which all but dynein f (also called dynein I1) are the single-headed type that are composed of a single heavy chain, actin, and either centrin or a 28-kDa protein (p28). Dynein d was found to associate with two additional proteins of 38 kDa (p38) and 44 kDa (p44). Following the characterization of the p38 protein (R. Yamamoto, H. A. Yanagisawa, T. Yagi, and R. Kamiya, FEBS Lett. 580:6357-6360, 2006), we have identified p44 as a novel component of dynein d by using an immunoprecipitation approach. p44 is present along the length of the axonemes and is diminished, but not absent, in the ida4 and ida5 mutants, both lacking this dynein. In the ida5 axoneme, p44 and p38 appear to form a complex, suggesting that they constitute the docking site of dynein d on the outer doublet. p44 has potential homologues in other ciliated organisms. For example, the mouse homologue of p44, NYD-SP14, was found to be strongly expressed in tissues with motile cilia and flagella. These results suggest that inner-arm dynein d and its subunit organization are widely conserved.


Assuntos
Proteínas de Algas/genética , Axonema/enzimologia , Chlamydomonas reinhardtii/enzimologia , Dineínas/química , Proteínas de Protozoários/química , Proteínas de Algas/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Southern Blotting , Movimento Celular , Chlamydomonas reinhardtii/genética , Cílios/metabolismo , Sequência Conservada , Dineínas/genética , Dineínas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Imunofluorescência , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Immunoblotting , Camundongos , Dados de Sequência Molecular , Subunidades Proteicas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Coelhos , Homologia de Sequência de Aminoácidos
14.
FEBS Lett ; 580(27): 6357-60, 2006 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-17094970

RESUMO

To elucidate the subunit composition of axonemal inner-arm dynein, we examined a 38 kDa protein (p38) co-purified with a Chlamydomonas inner arm subspecies, dynein d. We found it is a novel protein conserved among a variety of organisms with motile cilia and flagella. Immunoprecipitation using specific antibody verified its association with a heavy chain, actin and a previously identified light chain (p28). Unexpectedly, mutant axonemes lacking dynein d and other dyneins retained reduced amounts of p38. This finding suggests that p38 is involved in the docking of dynein d to specific loci.


Assuntos
Proteínas de Algas/genética , Chlamydomonas/genética , Dineínas/genética , Proteínas de Protozoários/genética , Proteínas de Algas/metabolismo , Animais , Chlamydomonas/metabolismo , Cílios/genética , Cílios/metabolismo , Dineínas/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas de Protozoários/metabolismo
15.
Mol Biol Cell ; 15(5): 2105-15, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14978211

RESUMO

In ciliary and flagellar axonemes, various discrete structures such as inner and outer dynein arms are regularly arranged on the outer doublet microtubules. Little is known about the basis for their regular arrangement. In this study, proteins involved in the attachment of inner-arm dyneins were searched by a microtubule overlay assay on Chlamydomonas mutant axonemes. A 58-kDa protein (p58) was found approximately 80% diminished in the mutants ida6 and pf3, both lacking one (species e) of the seven inner-arm species (a-g). Analysis of its cDNA indicated that p58 is homologous to tektin, a protein that was originally found in sea urchin and thought to be crucial for the longitudinal periodicity of the doublet microtubule. Unlike sea urchin tektin, which is a component of protofilament ribbons that occur after Sarkosyl treatment of axonemes, p58 was not contained in similar Sarkosyl-resistant ribbons from Chlamydomonas axonemes. Immunofluorescence microscopy showed that p58 was localized uniformly along the axoneme and on the basal body. The p58 signal was reduced in ida6 and pf3. These results suggest that a reduced amount of p58 is sufficient for the production of outer doublets, whereas an additional amount of it is involved in inner-arm dynein attachment.


Assuntos
Chlamydomonas/genética , Chlamydomonas/ultraestrutura , Dineínas/genética , Proteínas dos Microtúbulos/genética , Proteínas dos Microtúbulos/metabolismo , Sarcosina/análogos & derivados , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Chlamydomonas/metabolismo , Clonagem Molecular , Reagentes de Ligações Cruzadas/química , DNA Complementar/genética , Dimerização , Dineínas/metabolismo , Expressão Gênica , Microscopia de Fluorescência , Proteínas dos Microtúbulos/isolamento & purificação , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Modelos Biológicos , Dados de Sequência Molecular , Mutação , RNA Mensageiro/análise , Sarcosina/química , Alinhamento de Sequência , Ureia/química
16.
Cell Motil Cytoskeleton ; 53(4): 273-80, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12378537

RESUMO

We have recently shown that rabbit actin can be introduced by electroporation into the Chlamydomonas ida5 mutant lacking conventional actin and rescue its mutant phenotype [Hayashi et al., 2001: Cell Motil. Cytoskeleton 49:146-153]. In this study, we explored the possibility of using electroporation for functional assay of a recombinant protein. The p28 light chain of inner-arm dyneins was expressed in Escherichia coli, purified to homogeneity, and introduced by electroporation into a non-motile mutant ida4oda6 that lacks it. Because this protein was insoluble in the low ionic strength solution used in the previous study, electroporation was performed at physiological ionic strength in the presence of Ca(2+). Most cells shed their flagella after electroporation. Reflagellation took place within 3 h and up to 30% of the cells became motile, indicating that the introduced p28 retained its functional activity. Fluorescently-labeled p28 was equally effective; in this case fluorescence was observed along the flagella. The presence of Ca(2+) and deflagellation appeared to be important for efficient protein delivery, because a triple mutant with the fa1 mutation deficient in the flagellar shedding mechanism recovered motility only very poorly. Similar results were obtained with other combinations of recombinant proteins and mutants. This study thus demonstrates the feasibility of using electroporation for activity assays of recombinant proteins.


Assuntos
Proteínas de Bactérias/análise , Chlamydomonas/metabolismo , Dineínas/deficiência , Eletroporação/métodos , Mutação/genética , Proteínas Recombinantes de Fusão/análise , Animais , Proteínas de Bactérias/genética , Bioensaio/métodos , Cálcio/metabolismo , Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Chlamydomonas/genética , Dineínas/genética , Flagelos/efeitos dos fármacos , Flagelos/metabolismo , Corantes Fluorescentes , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Proteínas Recombinantes de Fusão/genética , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...